GUJARAT TECHNOLOGICAL UNIVERSITY

PHARM.D

3rd Year

Subject Name: PHARMACEUTICAL ANALYSIS Subject Code: 838802

Scope:

Objectives:

Sr.	Торіс	Hr				
1.	Quality Assurance: a. Introduction, sources of quality variation, control of quality	10				
	variation. b. Concept of statistical quality control. c. Validation methods- quality of					
	equipment, validation of equipment and validation of analytical instruments and					
	calibration. d. GLP, ISO 9000. e. Total quality management, quality review and documentation. f. ICH- international conference for harmonization-guidelines. g.					
	Regulatory control.					
2.	Chromatography: Introduction, history, classification, separation techniques,	30				
	choice of methods. The following techniques be discussed with relevant examples					
	of pharmaceutical products involving principles and techniques of separation of					
	drugs from excipients.					
	a. Column Chromatography: Adsorption column chromatography, Operational					
	technique, frontal analysis and elution analysis. Factors affecting column					
	efficiency, applications and partition chromatography.					
	b. TLC: Introduction, principle, techniques, Rf value and applications.c. PC: Introduction, principle, types of paper chromatography, preparation					
	techniques, development techniques, applications.					
	d. Ion-exchange chromatography : Introduction, principles, types of ion exchange					
	synthetic resins, physical properties, factors affecting ion exchange, methodology					
	and applications.					
	e. HPLC : Introduction, theory, instrumentation, and applications.					
	f. HPTLC: Introduction, theory, instrumentation, and applications.					
	g. Gas Chromatography: Introduction, theory, instrumentation-carrier gases,					
	types of columns, stationary phases in GLC & GSC. Detectors-Flame ionization					
	detectors, electron capture detector, thermal conductivity detector. Typical gas					
	chromatogram, derivatisation techniques, programmed temperature gas					
	chromatography, applications.					
	h. Electrophoresis: Principles of separation, equipment for paper and gel					
	electrophoresis, and application. i. Gel filtration and affinity chromatography : Introduction, technique,					
	i. Gel filtration and affinity chromatography: Introduction, technique, applications.					
3.	Electrometric Methods: Theoretical aspects, instrumentation, interpretation of	15				
~•	data/spectra and analytical applications be discussed on the following topics.	10				
	a. Potentiometry : Electrical potential, electrochemical cell, reference electrodes					
	indicator electrodes, measurement of potential and pH, construction and working					

		1
	of electrodes, Potentiometric titrations, methods of detecting end point, Karl Fischer titration.	
	b. Conductometry : Introduction, conductivity cell, conductometric titrations and applications.	
	c. Polarography : Instrumentation, DME, residual current, diffusion current and limiting current, polarographic wave, Ilkovic's equation, Effect of oxygen on	
	polarographic wave, Polarographic maxima and suppressors and applications.d. Amperometric Titrations: Introduction, types of electrodes used, reference and	
	indicator electrode, instrumentation, titration procedure, advantages and disadvantages of Amperometry over potentiometry. Pharma applications	
4.	Spectroscopy: Theoretical aspects, instrumentation, elements of interpretation of data/spectra and application of analytical techniques be discussed on:	35
	a. Absorption Spectroscopy: - Theory of electronic, atomic and molecular spectra.	
	Fundamental laws of photometry, Beer-Lambert's Law, application and its	
	deviation, limitation of Beer law, application of the law to single and multiple component analysis, measurement of equilibrium constant and rate constant by	
	spectroscopy. Spectra of isolated chromophores, auxochromes, batho-chromic	
	shift, hypsochromic shift, hyperchromic and hypochromic effect, effect of solvent	
	on absorption spectra, molecular structure and infrared spectra. Instrumentation – Photometer, U.VVisible spectrophotometer – sources of	
	U.VVisible radiations, collimating systems, monochromators, samples cells and	
	following detectors-Photocell, Barrier layer cell, Phototube, Diode array,	
	applications of U.VVisible spectroscopy in pharmacy and spectrophotometric titrations.	
	- Infrared Spectroscopy: Vibrational transitions, frequency – structure	
	correlations, Infrared absorption bands, Instrumentation–IR spectro-meter –	
	sources of IR, Collimating systems, monochromators, sample cells, sample handling in IR spectroscopy and detectors–Thermocouple, Golay Cells,	
	Thermistor, Bolometer, Pyroelectric detector, Applications of IR in pharmacy.	
	- Fluorimetric Analysis: Theory, luminescence, factors affecting fluorescence, quenching. Instrumentation, Applications, fluorescent indicators, study of	
	pharmaceutically important compounds estimated by fluorimetry	
	b. Flame Photometry: Theory, nebulisation, flame and flame temperature,	
	interferences, flame spectrometric techniques and instrumentation and pharmaceutical applications.	
	c. Atomic Absorption Spectrometry: Introduction, Theory, types of electrodes,	
	instrumentation and applications.	
	d. Atomic Emission Spectroscopy : Spectroscopic sources, atomic emission spectrometers, photographic and photoelectric detection.	
	e. NMR & ESR (introduction only): Introduction, theoretical aspects and	
	applications.	
	f. Mass Spectroscopy: (Introduction only) – Fragmentation, types of ions produced mass spectrum and applications.	
	g. Polarimetry: (Introduction only) – Introduction to optical rotatory dispersion,	
	circular dichroism, polarimeter.	
	h. X-RAY Diffraction: (Introduction only) – Theory, reciprocal lattice concept, diffraction patterns and applications	
	diffraction patterns and applications.	

i. Thermal	Analysis:	Introduction,	instrumentation,	applications,	and DSC and	
DTA.						

REFERENCES:

- 1. Molecular Biology of the Cell by Alberts B., Bray, D., Lewis, J., Raff M., Roberts, K and Watson, JD, 3rd edition.
- 2. Molecular Cell Biology By Lodish, H., Baltimore, D., Berk, A et al., 5th edition.
- 3. Molecular Biology by Turner, PC., McLennan, AG., Bates, AD and White MRH 2nd edition.
- 4. Genes VIII by Lewin, B., (2004)
- 5. Pharmaceutical Biotechnology, by Crommelin, DJA and Sindelar RD (1997)
- 6. Recombinant DNA by Watson, JD., Gilman, M., et al., (1996)
- 7. Biopharmaceutical: Biochemistry and Biotechnology by Walsh, G., (1998)

List of Experiments:

- 1. Separation and identification of Amino Acids by Paper Chromatography.
- 2. Separation and identification of Sulpha drugs by TLC technique.
- 3. Effect of pH and solvent on the UV spectrum of given compound.
- 4. Comparison of the UV spectrum of a compound with that of its derivatives.
- 5. Determination of dissociation constant of indicators using UV-Visible spectroscopy.
- 6. Conductometric titration of mixture of acids with a strong base.
- 7. Potentiometric titration of a acid with a strong base.
- 8. Estimation of drugs by Fluorimetric technique.
- 9. Study of quenching effect in fluorimetry.
- 10. Colourimetric estimation of Supha drugs using BMR reagent.
- 11. Simultaneous estimation of two drugs present in given formulation.
- 12. Assay of Salicylic Acid by colourimetry.
- 13. Determination of Chlorides and Sulphates in Calcium gluconate by Nepheloturbidimetric Method.
- 14. Determination of Na/K by Flame Photometry.
- 15. Determination of pKa using pH meter.
- 16. Determination of specific rotation.
- 17. Comparison of the IR spectrum of a compound with that of its derivatives.
- 18. Demonstration of HPLC.
- 19. Demonstration of HPTLC.
- 20. Demonstration of GC-MS.
- 21. Demonstration of DSC.
- 22. Interpretation of NMR spectra of any one compound.

Reference Books:

- 1. Text Book of Pharm. Analysis by Higuchi. T and Hasen. E. B., New York Inter Science Publishers.
- 2. Quantitative Pharma. Analysis by Jenkins, The Blakiston division, New York.
- 3. Quantitative Drug Analysis, by Garrot. D, Chapman & Hall Ltd., London.
- 4. Undergraduate Instrumental Analysis by James. E., CBS Publishers.
- 5. Instrumental Analysis by Willard and Merritt, EWP, East West Press Ltd., Delhi/Madras.
- 6. Pharm Analysis by Skoog and West, Sounders Manipal College Publishing.
- 7. Text Book of Chemical Analysis, by A.I.Vogel, ELBS with Macmillan press, Hampshire.

- 8. Textbook of Pharm. Analysis by K.A.Connors, John Wiley & Sons, New York, Brisbane, Singapore.
- 9. Textbook of Pharm. Analysis (Practical) by Beckett & Stenlake, CBS Publishers, Delhi.
- 10. Textbook of Drug Analysis by P.D. Sethi., CBS Publishers, Delhi.
- 11. Spectroscopy by Silverstein, John & Wiley & Sons. Inc., Canada & Singapore.
- 12. How to practise GMP-A Plan for total quality control by P.P. Sharma, Vandana Publications, Agra.
- 13. The Science & Practice of Pharmacy by Remington Vol-I & II, Mack Publishing Co. Pennsylvania.
- 14. TLC by Stahl, Spring Verlay.
- 15. Text Book of Pharm. Chemistry by Chatten, CBS Publications.
- 16. Spectroscopy by William Kemp, ELBS with Macmillan Press, Hampshire.
- 17. I.P.-1996, The Controller of Publications, New Delhi.
- 18. BPC- Dept. of Health, U.K. for HMSO.
- **19.** USP Mack Publishing Co., Easton, PA. 20. The Extra Pharmacopoeia The Pharm. Press, London